

Review:

A __ is any set of ordered pairs.

A
 \qquad is a set of ordered pairs where x is not repeated.

A repeated.

Only
functions can have functions.

What is an Inverse?

An inverse relation is a relation that performs the opposite operation on x (the domain).

Examples:

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{x})=\mathrm{x}-3 \\
\mathrm{~g}(\mathrm{x})=\sqrt{x} \quad, \mathrm{x} \geq 0 & \mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}+3 \\
\mathrm{~h}(\mathrm{x})=2 \mathrm{x} & \mathrm{~g}^{-1}(\mathrm{x})=\mathrm{x}^{2}, \mathrm{x} \geq 0 \\
\mathrm{k}(\mathrm{x})=-\mathrm{x}+3 & \mathrm{~h}^{-1}(\mathrm{x})=1 / 2 \mathrm{x} \\
& \mathrm{k}^{-1}(\mathrm{x})=-(\mathrm{x}-3)
\end{array}
$$

Section 1.9 : Illustration of the Definition of Inverse Functions

The ordered pairs of the function f are reversed to produce the ordered pairs of the inverse relation.

Example: Given the function
$f=\{(1,1),(2,3),(3,1),(4,2)\}$, its domain is $\{1,2,3,4\}$ and its range is $\{1,2,3\}$.
The inverse \qquad of f is $\{(1,1),(3,2),(1,3),(2,4)\}$.

The domain of the inverse relation is the range of the original function.

The range of the inverse relation is the domain of the original function.

How do we know if an inverse function exists?

- Inverse functions only exist if the original function is one to one. Otherwise it is an inverse relation and cannot be written as $f^{-1}(x)$.
- What does it mean to be one to one?

That there are no repeated y values.

Horizontal Line Test

Used to test if a function is one-to one
If the line intersection more than once then it is not one to one.

Therefore there is not inverse function.

Example: The function
$y=x^{2}-4 x+7$ is not one-to-one
because a horizontal line can intersect the graph twice.
Examples points: $(0,7) \&(4,7)$.

Example: Apply the horizontal line test to the graphs below to determine if the functions are one-to-one.

The Inverse is a Function
b) $y=x^{3}+3 x^{2}-x-1$

not one-to-one
The Inverse is a Relation

The graphs of a relation and its inverse are reflections in the line $y=x$.

Example: Find the graph of the inverse relation geometrically from the graph of $f(x)=\frac{1}{4}\left(x^{3}-2\right)$

The ordered pairs of f are given by the equation $y=\frac{1}{4}\left(x^{3}-2\right)$.

The ordered pairs of the inverse are given by $x=\frac{1}{4}\left(y^{3}-2\right)$.

Section 1.9 : Figure 1.93, Graph of an Inverse Function

Functions and their inverses are symmetric over the line $y=x$

To find the inverse of a relation algebraically, interchange x and y and solve for y.
Example: Find the inverse relation algebraically for the function $f(x)=3 x+2$.

DETERMINING IF 2 FUNCTIONS ARE INVERSES:

The inverse function "undoes" the original function, that is, $f^{-1}(f(x))=x$.

The function is the inverse of its inverse function, that is, $f\left(f^{-1}(x)\right)=x$.

Example: The inverse of $f(x)=x^{3}$ is $f^{-1}(x)=\sqrt[3]{x}$.

$$
f^{-1}(f(x))=\sqrt[3]{x}=x \text { and } f\left(f^{-1}(x)\right)=(\sqrt[3]{x})^{3}=x
$$

Example: Verify that the function $g(x)=\frac{x+1}{2}$ is the inverse of $f(x)=2 x-1$. 2

$$
\begin{aligned}
& g(f(x))=\frac{(f(x)+1)}{2}=\frac{((2 x-1)+1)}{2}=\frac{2 x}{2}=x \\
& f(g(x))=2 g(x)-1=2\left(\frac{x+1}{2}\right)-1=(x+1)-1=x
\end{aligned}
$$

It follows that $g=f^{-1}$.

Now Try: Page 99 \#13, 15, 23

pg 101 \# 69, 71, 73

Review of Today's Material

- A function must be 1-1 (pass the horizontal line test) to have an inverse function (written $\mathrm{f}^{-1}(x)$) otherwise the inverse is a relation ($\mathrm{y}=$)
- To find an inverse: 1) Switch x and y 2) Solve for y
- Original and Inverses are symmetric over $y=x$
-"
66
" have reverse domain $\&$ ranges
- Given two relations to test for inverses.
$\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{x})\right)=\mathrm{x}$ and $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=\mathrm{x} * *$ both must be true ${ }^{* *}$

Practice Problems and Homework

- Page 99-100
\# 16, 18, 20, 24, 39, 41, 43
\#55-67 odd

